
SIV Encryption Security Assessment

Tim McLean | November 4, 2016



Summary

Connect2id1 engaged the consultant, TimMcLean, to performa security assess-

ment of a Synthetic IV encryption library, siv-mode2 .

The assessment identified twomedium-severity vulnerabilities, described later

in this report. Additionally, this reportdocuments fourareas for improvements

thatpresenta loworunknownrisk, andprovidesguidelinesonusingsiv-mode

securely (see “Guidelines for Usage”).

About the consultant

TimMcLean is an independent consultantwhohelps companies deploy cryptog-

raphy securely. See https://www.chosenplaintext.ca for more information.

1 http://connect2id.com/
2 https://github.com/cryptomator/siv-mode

SUMMARY 2 of 15

https://www.chosenplaintext.ca
http://connect2id.com/
https://github.com/cryptomator/siv-mode


Vulnerability Details

1. Unsafe number of Associated Data (AD) elements per-
mitted

Severity: Medium. Impact: Medium. Exploitability: Medium.

Status: Resolved. An exception is thrown if toomanyAssociatedData elements

are provided.

Impact: Anattackerwith sufficient control over theAssociatedData inputsmay

be able to find other AD or plaintext inputs that have the same IV, allowing the

attacker to forge new messages (bypassing SIV mode’s tamper protection) or

decrypt existingmessages.

Description: The SIV mode of operation is only secure when there are fewer

than n-2 Associated Data elements, where n is the block size in bits (see RFC

5297 section 7, final paragraph). This is a limitation of the S2V construction,

which is only secure for up to n-1 input elements3 . For AES, amaximumof 126

AD elements should be permitted.

3 http://web.cs.ucdavis.edu/~rogaway/papers/keywrap.pdf

VULNERABILITY DETAILS 3 of 15

https://tools.ietf.org/html/rfc5297#section-7
https://tools.ietf.org/html/rfc5297#section-7
http://web.cs.ucdavis.edu/~rogaway/papers/keywrap.pdf


Fortunately, exploitability of this issue is limited to applications thatuse a large

(or attacker-controlled) number of AD elements.

Recommendations: Throw an exception if the number of AD elements passed

to encrypt or decrypt exceeds blockSizeInBits - 2.

VULNERABILITY DETAILS 4 of 15



2. Use of table lookups in Bouncy Castle AES implemen-
tation

Severity: Medium. Impact: High. Exploitability: Low.

Status: Resolved. The default block cipher is now the JCE AES implementation

instead of Bouncy Castle’s AES implementation. JCE uses AES-NI when avail-

able, which is immune to these side channel attacks.

Impact: In the right circumstances, an attacker can use a timing attack to

gradually learn information about each of the SIV keys, eventually allowing the

attacker to reconstruct the keys entirely.

Description: A “cache timing attack” is where an attacker observes how long

it takes to load data from memory in order to determine whether that value

was stored in the CPU cache. If the operation was fast, then the attacker can

conclude that the data was loaded from a cache. Based on the speed of the

operation, the attacker can also determine from which level of cache the data

was likely retrieved. These measurements can reveal a surprising amount of

information about what is going on in the internals of a running program.

When theAEScompetitionwasheld in the late 90s to choose a standard for sym-

metric encryption, cache timing attacks were not well known or understood.

TheAES algorithm thatweuse todaywas designed on the incorrect assumption

that the time it takes to load data from memory is unrelated to the memory

VULNERABILITY DETAILS 5 of 15



location being accessed. Unfortunately, there is a relation: memory locations

that have been accessed recently are more likely to have been cached.

In 2005, long after the AES competition had completed, Daniel Bernstein pub-

lished a paper4 describing how to mount a cache timing attack against AES in

order to extract the encryption key from a server. More papers soon followed,

improving on his original attack. In response, most libraries that used AES

implemented some sort of countermeasure to prevent the attacks.

Unfortunately, all three of Bouncy Castle’s AES implementations (AESEngine,

AESLightEngine, and AESFastEngine) appear to be vulnerable to cache timing

attacks. A bug reportwasfiled inAugust 2015 to the BouncyCastle project issue

tracker5 , but the project does not seem to have the resources to resolve the

problem properly. Practical exploitation of this vulnerability in Bouncy Castle

has been demonstrated6 .

Recommendations: Replace the Bouncy Castle AES implementation with one

that uses the CPU’s hardware support for AES. Most modern processors have

special instructions for hardware acceleration of AES. AES implementations

using these instructions are immune to cache timing attacks.

4 https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
5 http://www.bouncycastle.org/jira/browse/BJA-555
6 https://arxiv.org/pdf/1511.04897.pdf (page 11)

VULNERABILITY DETAILS 6 of 15

https://en.wikipedia.org/wiki/AES_instruction_set
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://www.bouncycastle.org/jira/browse/BJA-555
https://arxiv.org/pdf/1511.04897.pdf


3. PGP private key in public repository

Severity: Unknown.

Status: Resolved. According to the maintainer, the key is protected by “a 30-

character generated passphrase”, which should be sufficient tomake password

cracking impossible.

Description: An encrypted PGP private key for “releases@cryptomator.org”

was found in the public siv-mode repository. The key is password-protected.

Because the encrypted key is publicly available, anyone can download a copy

and attempt to crack the password while offline.

It is difficult to determine whether or not this presents a real risk without

knowing how the password was selected. Attempts to crack the password with

John the Ripper using a dictionary of popular passwords were unsuccessful.

However, this is not representative of the time and resources available to a real-

world attacker.

Recommendations: Avoid making private keys available publicly, even

when password-protected. Alternatively, ensure that the password cannot

be cracked by generating a password with at least 100 bits of entropy (e.g. a

Dicewarepassphrase of 8 ormorewords, or a randomlygenerated 20-character

alphanumeric password).

VULNERABILITY DETAILS 7 of 15

http://world.std.com/~reinhold/diceware.html


4. Overwriting keys after use is not effective

Severity: Low. Impact: Low. Exploitability: Low.

Status: Resolved.

Impact: Library users are given the impression that the two keys can be over-

written after use in order to eliminate those keys frommemory. However, both

keys are copied in memory many times during the encryption and decryption

operations. Those copies are not overwritten before being garbage collected.

Description: Both of the encrypt and decrypt methods that accept SecretKey

objects operate ona copyof the rawbytes inside eachSecretKeyobject. Before

returning, that copy is overwritten with 0x00 bytes.

This behaviour is documented: the methods that accept SecretKey objects

claim to destroy the key bytes after use, while themethods that accept key byte

arrays directly indicate that the calling method itself must overwrite the keys

when done.

Unfortunately, this provides no effective protection. During the encryption

and decryption operations many copies of each key are created in memory.

For example, the KeyParameter constructormakes a copy of the provided key,

and AESFastEngine copies the key into WorkingKey in the key schedule. Since

VULNERABILITY DETAILS 8 of 15



these copies are subject to normal garbage collection, erasing the other copies

of the keys is not beneficial.

Recommendations: One option is to fork Bouncy Castle and patch all relevant

code to ensure that keys are properly erased after use.

Realistically, however, overwriting keys after use is not strictly necessary. In

languages like C that are not memory safe, erasing keys can serve as “defense

in depth” in case an attacker is able to exploit a vulnerability to read other parts

of a program’s memory. In Java, barring a vulnerability in the JVM or a native

library, this is not as useful.

Since Bouncy Castle cannot provide this kind of protection, the best optionmay

be simply to remove the feature and document this limitation.

VULNERABILITY DETAILS 9 of 15



5. Undocumented limitation on block size

Severity: Unknown.

Status: Resolved.

Description: When instanciatedwith block cipherswith a block size other than

128 bits, SivMode will typically throw an exception, but will sometimes output

an incorrect result.

Recommendations: Either implement support for other block sizes, or docu-

ment this limitation. If the limitation is kept, throw an exception immediately

if a block cipher implementation does not use the supported block size.

VULNERABILITY DETAILS 10 of 15



6. Arithmetic without proper checks for overflow

Severity: Informational.

Status: Resolved.

Description: In the implementation of counter mode encryption, a value

numBlocks is computed based on the length of the plaintext input:

final int numBlocks = (plaintext.length + 15) / 16;

// ...

final byte[] x = new byte[numBlocks * 16];

An attacker can choose a length for plaintext such that numBlocks

overflows and becomes negative. However, the first usage of numBlocks

is to compute a length to initialize an array (x), at which point a

NegativeArraySizeException is thrown, making this overflow

unexploitable.

A refactor could make this exploitable by allowing an attacker to, for example,

create discrepancies between what data is encrypted/decrypted vs what data

is processed when computing the IV.

Recommendations: If it is possible for an arithmetic calculation to overflow,

validate the inputs to that calculation to prevent overflow from occurring.

VULNERABILITY DETAILS 11 of 15



Example for encrypt:

// Validate length before the calculation occurs

if (plaintext.length > (Integer.MAX_VALUE - 15)) {

throw new IllegalArgumentException("plaintext is too long");

}

final int numBlocks = (plaintext.length + 15) / 16;

VULNERABILITY DETAILS 12 of 15



Guidelines for Usage

• Key generation:

Generate keys using a secure random number generator:

byte[] key = new byte[32];
new SecureRandom().nextBytes(key);

Keys can be 16, 24, or 32 bytes each. I recommend 32-byte keys, unless

performance is a concern.

• Using the keys:

Unlike most encryption modes of operation, SIV mode requires not one

key, but two: an encryption key (ctrKey) and an authentication key

(macKey). It is best to treat these two keys as one inseparable large key.

Once a pair of keys has been generated, those keys must always be used

together. It is not safe to use either of those keys without the other.

Additionally, the two keys must always be used for the same purpose –

i.e. the ctrKey cannot be swapped with the macKey.

• Additional Associated Data:

The SIV mode encrypt and decrypt operations are variable-argument

methods,whichallows themtobepassed zero ormoreadditionalData
elements. Additional data is data that should not be encrypted, but

should still be protected against tampering. This feature is optional and

safe to ignore (by not providing any arguments for additionalData).

GUIDELINES FOR USAGE 13 of 15



• Usage limits:

A singleAES-SIVkeypair canonly safely encrypt up to about 2ˆ63unique

messages, at which point the key pair must be replaced. Most real world

systems, however, will not reach this threshold.

GUIDELINES FOR USAGE 14 of 15



Copyright 2016 TimMcLean

Although reasonable efforts were made to ensure that this analysis was com-

prehensive, it is not guaranteed that no other vulnerabilities exist. As with any

security assessment, it is possible that other security defects will be identified,

especially as the state of the art in offensive research advances.

GUIDELINES FOR USAGE 15 of 15


	Summary
	About the consultant

	Vulnerability Details
	1. Unsafe number of Associated Data (AD) elements permitted
	2. Use of table lookups in Bouncy Castle AES implementation
	3. PGP private key in public repository
	4. Overwriting keys after use is not effective
	5. Undocumented limitation on block size
	6. Arithmetic without proper checks for overflow

	Guidelines for Usage

